Fractional-order two-input two-output process identification based on Haar operational matrix
نویسندگان
چکیده
منابع مشابه
Numerical Solution of Fractional Control System by Haar-wavelet Operational Matrix Method
In recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. The following method is based on vector forms of Haar-wavelet functions. In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet operational matrices of the fractional order integration. Also the Haar-wavelet operational matrices of ...
متن کاملThe operational matrix of fractional derivative of the fractional-order Chebyshev functions and its applications
In this paper, we introduce a family of fractional-order Chebyshev functions based on the classical Chebyshev polynomials. We calculate and derive the operational matrix of derivative of fractional order $gamma$ in the Caputo sense using the fractional-order Chebyshev functions. This matrix yields to low computational cost of numerical solution of fractional order differential equations to the ...
متن کاملHaar Wavelet Operational Matrix of Fractional Order Integration and its Application for Eigenvalues of Fractional Sturm-Liouville Problem
In this paper, we derive Haar wavelet operational matrix of the fractional integration and use it to obtain eigenvalues of fractional Sturm-Liouville problem. The fractional derivative is described in the Caputo sense. The efficiency of the method is demo nstrated by examples MSC: 26A33
متن کاملHaar Wavelet Operational Matrix of Fractional Order Integration and its Application for Eigenvalues of Fractional Sturm-Liouville Problem
In this paper, we derive Haar wavelet operational matrix of the fractional integration and use it to obtain eigenvalues of fractional Sturm-Liouville problem. The fractional derivative is described in the Caputo sense. The efficiency of the method is demonstrated by examples MSC: 26A33
متن کاملStudy on multi-order fractional differential equations via operational matrix of hybrid basis functions
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Systems Science
سال: 2020
ISSN: 0020-7721,1464-5319
DOI: 10.1080/00207721.2020.1857503